Abstract
We present UniSpec, an attention-driven deep neural network designed to predict comprehensive collision-induced fragmentation spectra, thereby improving peptide identification in shotgun proteomics. Utilizing a training data set of 1.8 million unique high-quality tandem mass spectra (MS2) from 0.8 million unique peptide ions, UniSpec learned with a peptide fragmentation dictionary encompassing 7919 fragment peaks. Among these, 5712 are neutral loss peaks, with 2310 corresponding to modification-specific neutral losses. Remarkably, UniSpec can predict 73%-77% of fragment intensities based on our NIST reference library spectra, a significant leap from the 35%-45% coverage of only b and y ions. Comparative studies with Prosit elucidate that while both models are strong at predicting their respective fragment ion series, UniSpec particularly shines in generating more complex MS2 spectra with diverse ion annotations. The integration of UniSpec's predictions into shotgun proteomics data analysis boosts the identification rate of tryptic peptides by 48% at a 1% false discovery rate (FDR) and 60% at a more confident 0.1% FDR. Using UniSpec's predicted in-silico spectral library, the search results closely matched those from search engines and experimental spectral libraries used in peptide identification, highlighting its potential as a stand-alone identification tool. The source code and Python scripts are available on GitHub (https://github.com/usnistgov/UniSpec) and Zenodo (https://zenodo.org/records/10452792), and all data sets and analysis results generated in this work were deposited in Zenodo (https://zenodo.org/records/10052268).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.