Abstract

Finite elements with polynomial basis functions on the simplex with a symmetric distribution of nodes should have a unique polynomial representation. Unisolvence not only requires that the number of nodes equals the number of independent polynomials spanning a polynomial space of a given degree, but also that the Vandermonde matrix controlling their mapping to the Lagrange interpolating polynomials can be inverted. Here, a necessary condition for unisolvence is presented for polynomial spaces that have non-decreasing degrees when going from the edges and the various faces to the interior of the simplex. It leads to a proof of a conjecture on a necessary condition for unisolvence, requiring the node pattern to be the same as that of the regular simplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.