Abstract

We present two type systems for term graph rewriting: conventional typing and (polymorphic) uniqueness typing. The latter is introduced as a natural extension of simple algebraic and higher-order uniqueness typing. The systems are given in natural deduction style using an inductive syntax of graph denotations with familiar constructs such as let and case.The conventional system resembles traditional Curry-style typing systems in functional programming languages. Uniqueness typing extends this with reference count information. In both type systems, typing is preserved during evaluation, and types can be determined effectively. Moreover, with respect to a graph rewriting semantics, both type systems turn out to be sound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call