Abstract
This paper is concerned with inverse acoustic source problems in an unbounded domain with dynamical boundary surface data of Dirichlet kind. The measurement data are taken at a surface far away from the source support. We prove uniqueness in recovering source terms of the form f(x)g(t) and f(x1, x2, t)h(x3), where g(t) and h(x3) are given and x = (x1, x2, x3) is the spatial variable in three dimensions. Without these a priori information, we prove that the boundary data of a family of solutions can be used to recover general source terms depending on both time and spatial variables. For moving point sources radiating periodic signals, the data recorded at four receivers are prove sufficient to uniquely recover the orbit function. Simultaneous determination of embedded obstacles and source terms was verified in an inhomogeneous background medium using the observation data of infinite time period. Our approach depends heavily on the Laplace transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Mathematicae Applicatae Sinica, English Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.