Abstract
In this paper, we study the uniqueness of weak solutions of the heat flow of half-harmonic maps, which was first introduced by Wettstein as a half-Laplacian heat flow and recently studied by Struwe using more classical techniques. On top of its similarity with the two dimensional harmonic map flow, this geometric gradient flow is of interest due to its links with free boundary minimal surfaces and the Plateau problem, leading Struwe to propose the name Plateau flow, which we adopt throughout. We obtain uniqueness of weak solutions of this flow under a natural condition on the energy, which answers positively a question raised by Struwe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.