Abstract

We prove that any complex differential equation with two monomials of the form z˙=azkz¯l+bzmz¯n, with k,l,m,n non-negative integers and a,b∈C, has one limit cycle at most. Moreover, we characterise when such a limit cycle exists and prove that then it is hyperbolic. For an arbitrary equation of the above form, we also solve the centre-focus problem and examine the number, position, and type of its critical points. In particular, we prove a Berlinskiĭ-type result regarding the geometrical distribution of the critical points stabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.