Abstract

Given a distribution on the positive extended real line, the two-sided inverse first-passage time problem for Brownian motion asks for a function such that the first passage time of this function by a reflected Brownian motion has the given distribution. We combine the ideas of Ekström and Janson, which were developed within the scope of the one-sided inverse first-passage time problem, with the methods of De Masi et al., which were used in the context of free boundary problems, in order to give a different proof for the uniqueness for the two-sided inverse first-passage time problem by using a stochastic order relation. We provide criteria for qualitative properties of solutions of the inverse first-passage problem, which apply to the boundary corresponding to the exponential distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.