Abstract

We consider semidifferentiable (possibly nonsmooth) maps, acting on a subset of a Banach space, that are nonexpansive either in the norm of the space or in Hilbert’s or Thompson’s metric inherited from a convex cone. We show that the global uniqueness of the fixed point of the map, as well as the geometric convergence of every orbit to this fixed point, can be inferred from the semidifferential of the map at this point. In particular, we show that the geometric convergence rate of the orbits to the fixed point can be bounded in terms of Bonsall’s nonlinear spectral radius of the semidifferential. We derive similar results concerning the uniqueness of the eigenline and the geometric convergence of the orbits to it, in the case of positively homogeneous maps acting on the interior of a cone, or of additively homogeneous maps acting on an AM-space with unit. This is motivated in particular by the analysis of dynamic programming operators (Shapley operators) of zero-sum stochastic games.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.