Abstract
In this paper we prove uniqueness of blow-ups and $C^{1,\log}$-regularity for the free-boundary of minimizers of the Alt-Caffarelli functional at points where one blow-up has an isolated singularity. We do this by establishing a (log-)epiperimetric inequality for the Weiss energy for traces close to that of a cone with isolated singularity, whose free-boundary is graphical and smooth over that of the cone in the sphere. With additional assumptions on the cone, we can prove a classical epiperimetric inequality which can be applied to deduce a $C^{1,\alpha}$ regularity result. We also show that these additional assumptions are satisfied by the De Silva-Jerison-type cones, which are the only known examples of minimizing cones with isolated singularity. Our approach draws a connection between epiperimetric inequalities and the \L ojasiewicz inequality, and, to our knowledge, provides the first regularity result at singular points in the one-phase Bernoulli problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.