Abstract

To each path of self-adjoint Fredholm operators acting on a real separable Hilbert space H with invertible ends, there is associated an integer called spectral flow. The purpose of this brief note is to show that spectral flow is uniquely characterized by four elementary properties: normalization, continuity, additivity over direct sums, and its value as the difference of the Morse indices of the ends when H is finite dimensional. The proof of uniqueness relies of the invariance of spectral flow of the path under cogredient transformations of the path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.