Abstract
We consider initial boundary value problems with boundary conditions of the first or second kind for one-dimensional (with respect to a spatial variable) Petrovskii parabolic systems of the second order with variable coefficients in a bounded domain with nonsmooth lateral boundaries. The uniqueness of regular solutions to these problems in the class of functions that are continuous in the closure of the domain together with their first spatial derivatives is established using the boundary integral equation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.