Abstract
We study the solution set to multivariate Chebyshev approximation problem, focussing on the ill-posed case when the uniqueness of solutions can not be established via strict polynomial separation. We obtain an upper bound on the dimension of the solution set and show that nonuniqueness is generic for ill-posed problems on discrete domains. Moreover, given a prescribed set of points of minimal and maximal deviation we construct a function for which the dimension of the set of best approximating polynomials is maximal for any choice of domain. We also present several examples that illustrate the aforementioned phenomena, demonstrate practical application of our results and propose a number of open questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.