Abstract

We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrodinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.