Abstract

As the most significant difference from parabolic equations, long-time or short-time behavior of solutions to time-fractional evolution equations is dominated by the fractional orders, whose unique determination has been frequently investigated in literature. Unlike all the existing results, in this article we prove the uniqueness of orders and parameters (up to a multiplier for the latter) only by principal terms of asymptotic expansions of solutions near t = 0 at a single spatial point. Moreover, we discover special conditions on unknown initial values or source terms for the coincidence of observation data. As a byproduct, we can even conclude the uniqueness for initial values or source terms by the same data. The proof relies on the asymptotic expansion after taking the Laplace transform and the completeness of generalized eigenfunctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.