Abstract

We give a complete characterization of the (non)classicality of all stabilizer subtheories. First, we prove that there is a unique nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory in all odd dimensions, namely Gross's discrete Wigner function. This representation is equivalent to Spekkens' epistemically restricted toy theory, which is consequently singled out as the unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the principle of noncontextuality is powerful enough (at least in this setting) to single out one particular classical realist interpretation. Our result explains the practical utility of Gross's representation by showing that (in the setting of the stabilizer subtheory) negativity in this particular representation implies generalized contextuality. Since negativity of this particular representation is a necessary resource for universal quantum computation in the state injection model, it follows that generalized contextuality is also a necessary resource for universal quantum computation in this model. In all even dimensions, we prove that there does not exist any nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory, and, hence, that the stabilizer subtheory is contextual in all even dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.