Abstract
We prove that K-polystable degenerations of $\mathbb{Q}$-Fano varieties are unique. Furthermore, we show that the moduli stack of K-stable $\mathbb{Q}$-Fano varieties is separated. Together with recently proven boundedness and openness statements, the latter result yields a separated Deligne-Mumford stack parametrizing all uniformly K-stable $\mathbb{Q}$-Fano varieties of fixed dimension and volume. The result also implies that the automorphism group of a K-stable $\mathbb{Q}$-Fano variety is finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.