Abstract

We consider the system of m linear equations in n integer variables Ax = d and give sufficient conditions for the uniqueness of its integer solution x ∈ {−1, 1}n by reformulating the problem as a linear program. Necessary and sufficient uniqueness characterizations of ordinary linear programming solutions are utilized to obtain sufficient uniqueness conditions such as the intersection of the kernel of A and the dual cone of a diagonal matrix of ±1’s is the origin in Rn. This generalizes the well known condition that ker(A) = 0 for the uniqueness of a non-integer solution x of Ax = d. A zero maximum of a single linear program ensures the uniqueness of a given integer solution of a linear equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.