Abstract

This paper exploits two remarkable features of the translationally form-invariant (TFI) canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrödinger equation with the shape-invariant Gendenshtein (Scarf II) potential. First, the Darboux–Crum net of rationally extended Gendenshtein potentials can be specified by a single series of Maya diagrams. Second, the exponent differences for the poles of the CSLE in the finite plane are energy-independent. The cornerstone of the presented analysis is the reformulation of the conventional supersymmetric (SUSY) quantum mechanics of exactly solvable rational potentials in terms of ‘generalized Darboux transformations’ of canonical Sturm–Liouville equations introduced by Rudyak and Zakhariev at the end of the last century. It has been proven by the author that the first feature assures that all the eigenfunctions of the TFI CSLE are expressible in terms of Wronskians of seed solutions of the same type, while the second feature makes it possible to represent each of the mentioned Wronskians as a weighted Wronskian of Routh polynomials. It is shown that the numerators of the polynomial fractions in question form the exceptional orthogonal polynomial (EOP) sequences composed of Wronskian transforms of the given finite set of Romanovski–Routh polynomials excluding their juxtaposed pairs, which have already been used as seed polynomials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call