Abstract
We refine our earlier work on the existence and uniqueness of E∞ structures on K- theoretic spectra to show that at each prime p, the connective Adams summand l has a unique structure as a commutative S-algebra. For the p-completion lp we show that the McClure- Staffeldt model for lp is equivalent as an E∞ ring spectrum to the connective cover of the periodic Adams summand Lp. We establish a Bousfield equivalence between the connective cover of the Lubin-Tate spectrum En and BPh ni .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.