Abstract

This paper studies conditions under which the price of an asset is uniquely determined by its fundamental value – i.e., no bubbles can arise – in Lucas-type asset pricing models with unbounded utility. After discussing Gilles and LeRoy's (1992) example, we construct an example of a two-period, representative agent economy to demonstrate that bubbles can arise in a standard model if utility is unbounded below, in which case the stochastic Euler equation may be violated. In an infinite horizon framework, we show that bubbles cannot arise if the optimal sequence of asset holdings can be lowered uniformly without incurring an infinite utility loss. Using this result, we develop conditions for the nonexistence of bubbles. The conditions depend exclusively on the asymptotic behavior of marginal utility at zero and infinity. They are satisfied by many unbounded utility functions, including the entire CRRA (constant relative risk aversion) class. The Appendix provides a complete market version of our two-period example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.