Abstract
The paper deals with an inverse problem determining the shape of a time-varying Lipschitz domain by boundary measurements of the temperature; such a domain is treated as a non-cylindrical domain in the time-space. Here we focus on the uniqueness of the shape identification. As a general treatment to show the uniqueness, a comparability condition on a pair of domains is introduced; the condition holds automatically in the time-independent case. Based on the condition, we provide several classes of domains in which the uniqueness of the shape identification holds under an appropriate initial shape condition or initial temperature condition. Each of such classes is characterized by a certain geometric condition on its each single element; in particular, it is verified that the class of polyhedral domains and any class of domains with C1 smoothness and with a common initial shape fulfil the uniqueness property. The inverse problem is studied via a parabolic equation with a mixed boundary condition. Then the unique continuation property of weak solutions and the uniqueness of weak solutions to an induced parabolic equation with the homogeneous Dirichlet boundary condition on a non-cylindrical non-Lipschitz domain play key roles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.