Abstract
The objective of this paper is to study nonlinear partial differential systems like $$ \partial_t {\bf u}- \Delta {\bf u} +{\bf H}(x,t,{\bf u}, \nabla {\bf u})={\bf G}(x,t), $$ with applications to the solution of stochastic differential games with $N$ players, where $N$ is arbitrarily large. It is assumed that the Hamiltonian ${\bf H}$ of the nonlinear system satisfies a quadratic growth condition in $\nabla {\bf u}$ and has a positive definite Jacobian ${\bf H_u}$. An energy estimate and the uniqueness property for bounded weak solutions are proved. Moreover, applications to stochastic games and financial economics such as modern portfolio theory are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.