Abstract

One of the basic inverse problems in an anisotropic media is the determination of coefficients in a bounded domain with a single measurement. We consider the problem of finding the coefficient of the second derivatives in a second-order hyperbolic equation with variable coefficients. Under a weak regularity assumption and a geometrical condition on the metric, we prove the uniqueness in a multidimensional hyperbolic inverse problem with a single measurement. Moreover we show that our uniqueness results yield the Lipschitz stability estimate in L 2 space for solution to the inverse problem under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.