Abstract
This paper is devoted to the Lin-Ni conjecture for a semi-linear elliptic equation with a super-linear, sub-critical nonlinearity and homogeneous Neumann boundary conditions. We establish a new rigidity result, that is, we prove that the unique positive solution is a constant if the parameter of the problem is below an explicit bound that we relate with an optimal constant for a Gagliardo-Nirenberg-Sobolev interpolation inequality and also with an optimal Keller-Lieb-Thirring inequality. Our results are valid in a sub-linear regime as well. The rigidity bound is obtained by nonlinear flow methods inspired by recent results on compact manifolds, which unify nonlinear elliptic techniques and the carre du champ method in semi-group theory. Our method requires the convexity of the domain. It relies on integral quantities, takes into account spectral estimates and provides improved functional inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de la Faculté des sciences de Toulouse : Mathématiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.