Abstract
The stationary Navier–Stokes equations under Navier boundary conditions are considered in a square. The uniqueness of solutions is studied in dependence of the Reynolds number and of the strength of the external force. For some particular forcing, it is shown that uniqueness persists on some continuous branch of solutions, when these quantities become arbitrarily large. On the other hand, for a different forcing, a branch of symmetric solutions is shown to bifurcate, giving rise to a secondary branch of nonsymmetric solutions. This proof is computer-assisted, based on a local representation of branches as analytic arcs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.