Abstract
Matrix Joint Diagonalization (MJD) is a powerful approach for solving the Blind Source Separation (BSS) problem. It relies on the construction of matrices which are diagonalized by the unknown demixing matrix. Their joint diagonalizer serves as a correct estimate of this demixing matrix only if it is uniquely determined. Thus, a critical question is under what conditions is a joint diagonalizer unique. In the present work we fully answer this question about the identifiability of MJD based BSS approaches and provide a general result on uniqueness conditions of matrix joint diagonalization. It unifies all existing results which exploit the concepts of non-circularity, non-stationarity, non-whiteness, and non-Gaussianity. As a corollary, we propose a solution for complex BSS, which can be formulated in closed form in terms of an eigen and a singular value decomposition of two matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.