Abstract

In this paper we generalize the concept of uniquely $K_r$-saturated graphs to hypergraphs. Let $K_r^{(k)}$ denote the complete $k$-uniform hypergraph on $r$ vertices. For integers $k,r,n$ such that $2\leqslant k <r<n$, a $k$-uniform hypergraph $H$ with $n$ vertices is uniquely $K_r^{(k)}$-saturated if $H$ does not contain $K_r^{(k)}$ but adding to $H$ any $k$-set that is not a hyperedge of $H$ results in exactly one copy of $K_r^{(k)}$. Among uniquely $K_r^{(k)}$-saturated hypergraphs, the interesting ones are the primitive ones that do not have a dominating vertex—a vertex belonging to all possible ${n-1\choose k-1}$ edges. Translating the concept to the complements of these hypergraphs, we obtain a natural restriction of $\tau$-critical hypergraphs: a hypergraph $H$ is uniquely $\tau$-critical if for every edge $e$, $\tau(H-e)=\tau(H)-1$ and $H-e$ has a unique transversal of size $\tau(H)-1$.We have two constructions for primitive uniquely $K_r^{(k)}$-saturated hypergraphs. One shows that for $k$ and $r$ where $4\leqslant k<r\leqslant 2k-3$, there exists such a hypergraph for every $n>r$. This is in contrast to the case $k=2$ and $r=3$ where only the Moore graphs of diameter two have this property. Our other construction keeps $n-r$ fixed; in this case we show that for any fixed $k\ge 2$ there can only be finitely many examples. We give a range for $n$ where these hypergraphs exist. For $n-r=1$ the range is completely determined: $k+1\leqslant n \leqslant {(k+2)^2\over 4}$. For larger values of $n-r$ the upper end of our range reaches approximately half of its upper bound. The lower end depends on the chromatic number of certain Johnson graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.