Abstract

The complete understanding of the mechanical and thermal responses to strain in hybrid organic-inorganic perovskites holds great potential for their proper functionalities in a range of applications, such as in photovoltaics, thermoelectrics, and flexible electronics. In this work, we conduct systematic atomistic simulations on methyl ammonium lead iodide, which is the prototypical hybrid inorganic-organic perovskite, to investigate the changes in their mechanical and thermal transport responses under uniaxial strain. We find that the mechanical response and the deformation mechanisms are highly dependent on the direction of the applied uniaxial strain with a characteristic ductile- or brittle-like failure accompanying uniaxial tension. Moreover, while most materials shrink in the two lateral directions when stretched, we find that the ductile behavior in hybrid perovskites can lead to a very unique mechanical response where negligible strain occurs along one lateral direction while the length contraction occurs in the other direction due to uniaxial tension. This anisotropy in the mechanical response is also shown to manifest in an anisotropic thermal response of the hybrid perovskite where the anisotropy in thermal conductivity increases by up to 30% compared to the unstrained case before plastic deformation occurs at higher strain levels. Along with the anisotropic responses of these physical properties, we find that uniaxial tension leads to ultralow thermal conductivities that are well below the value predicted with a minimum thermal conductivity model, which highlights the potential of strain engineering to tune the physical properties of hybrid organic-inorganic perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.