Abstract

Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three-photon mixing process, may provide a direct and unique fingerprint of bio-recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second-order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio-active antigen platform, based on a solid-supported hybrid lipid bilayer (ss-HLB) of a 2,4-dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti-DNP complementary antibody.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.