Abstract

Excessive alcohol consumption has a multifaceted impact on the body's metabolic pathways and organ systems. The objectives of this study were to characterize global metabolomic changes and identify specific pathways that are altered in individuals with excessive alcohol use. This exploratory study included 22 healthy controls with no known history of excessive alcohol use and 38 patients identified as using alcohol excessively. A Fibrosis-4 score was used to determine the risk of underlying alcohol-associated liver disease among the excessive drinkers. We found significantly altered urinary and serum metabolites among excessive drinkers, affecting various metabolic pathways including the metabolism of lipids, amino acids and peptides, cofactors and vitamins, carbohydrates, and nucleotides. Levels of two steroid hormones-5alpha-androstan-3beta,17beta-diol disulfate and androstenediol (3beta,17beta) disulfate-were significantly higher in both the serum and urine samples of excessive drinkers. These elevated levels may be associated with a higher risk of liver fibrosis in individuals with excessive alcohol use. Alcohol consumption leads to marked alterations in multiple metabolic pathways, highlighting the systemic impact of alcohol on various tissues and organ systems. These findings provide a foundation for future mechanistic studies aimed at elucidating alcohol-induced changes in these metabolic pathways and their implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call