Abstract
In this paper, we estimate perceived image quality using sparse representations obtained from generic image databases through an unsupervised learning approach. A color space transformation, a mean subtraction, and a whitening operation are used to enhance descriptiveness of images by reducing spatial redundancy; a linear decoder is used to obtain sparse representations; and a thresholding stage is used to formulate suppression mechanisms in a visual system. A linear decoder is trained with 7 GB worth of data, which corresponds to 100,000 8x8 image patches randomly obtained from nearly 1,000 images in the ImageNet 2013 database. A patch-wise training approach is preferred to maintain local information. The proposed quality estimator UNIQUE is tested on the LIVE, the Multiply Distorted LIVE, and the TID 2013 databases and compared with thirteen quality estimators. Experimental results show that UNIQUE is generally a top performing quality estimator in terms of accuracy, consistency, linearity, and monotonic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.