Abstract
Temperature dependent photoluminescence (PL) spectroscopy in a range of 5 K to room temperature (RT, 290 K) and single dot blinking behavior were investigated for CdTe/CdSe (core/shell, C/S) quantum dots (QDs). The QDs show type-II characteristics as both of the valence and conduction band levels of the CdTe core are placed higher in energy than those of the CdSe shell. The thickness of the CdSe shell was varied to control the degree of type-II character, and bare CdTe QDs were used as controls. The CdTe/CdSe (C/S) QDs have unique PL properties including (i) high susceptibility to PL thermal quenching with an exciton dissociation energy as small as 18 meV, compared with 46 meV for the CdTe QD, (ii) smaller band gap change showing only half the reduction of the control within the temperature change, and (iii) up to 27% larger PL bandwidth broadening than the control. The unique temperature-dependent properties were enhanced as the type-II character was increased by the thicker CdSe shell. Single dot level ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.