Abstract

Cytosolic phospholipase A2 (cPLA2)–generated arachidonic acid (AA) has been shown to be an essential requirement for the activation of NADPH oxidase, in addition to its being the major enzyme involved in the formation of eicosanoid at the nuclear membranes. The mechanism by which cPLA2 regulates NADPH oxidase activity is not known, particularly since the NADPH oxidase complex is localized in the plasma membranes of stimulated cells. The present study is the first to demonstrate that upon stimulation cPLA2 is transiently recruited to the plasma membranes by a functional NADPH oxidase in neutrophils and in granulocyte-like PLB-985 cells. Coimmunoprecipitation experiments and double labeling immunofluorescence analysis demonstrated the unique colocalization of cPLA2 and the NADPH oxidase in plasma membranes of stimulated cells, in correlation with the kinetic burst of superoxide production. A specific affinity in vitro binding was detected between GST-p47phox or GST-p67phox and cPLA2 in lysates of stimulated cells. The association between these two enzymes provides the molecular basis for AA released by cPLA2 to activate the assembled NADPH oxidase. The ability of cPLA2 to regulate two different functions in the same cells (superoxide generation and eicosanoid production) is achieved by a novel dual subcellular localization of cPLA2 to different targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.