Abstract
The humoral immune response of camels, dromedaries and llamas includes functional antibodies formed by two heavy chains and no light chains. The amino acid sequence of the variable domain of the naturally occurring heavy-chain antibodies reveals the necessary adaptations to compensate for the absence of the light chain. In contrast to the conventional antibodies, a large proportion of the heavy-chain antibodies acts as competitive enzyme inhibitors. Studies on the dromedary immunoglobulin genes start to shed light on the ontogeny of these heavy-chain antibodies. The presence of the heavy-chain antibodies and the possibility of immunizing a dromedary allows for the production of antigen binders consisting of a single domain only. These minimal antigen-binding fragments are well expressed in bacteria, bind the antigen with affinity in the nM range and are very stable. We expect that such camelid single domain antibodies will find their way into a number of biotechnological or medical applications. The structure of the camelid single domain is homologous to the human VH, however, the antigen-binding loop structures deviate fundamentally from the canonical structures described for human or mouse VHs. This has two additional advantages: (1) the camel or llama derived single domain antibodies might be an ideal scaffold for anti-idiotypic vaccinations; and (2) the development of smaller peptides or peptide mimetic drugs derived from of the antigen binding loops might be facilitated due to their less complex antigen binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.