Abstract

Low molecular weight organic acids (LMWOA) involved in heavy metal tolerance, translocation, and accumulation in plants. However, underlying mechanism of LMWOA secretion in metal mobilization and uptake in hyperaccumulator still need to be identified. In this study, a 13C labeling rhizobox was designed to investigate the composition and distribution of LMWOA in the rhizosphere of S. alfredii. The result showed that about 2.30%, 2.25% and 2.35% of the assimilated 13C was incorporated into oxalic acid, malic acid, and tartaric acid in rhizosphere of S. alfredii after 13CO2 assimilation, respectively. Oxalic acid, malic acid, and tartaric acid were the predominant LMWOA in rhizosphere soil solution of hyperaccumulating ecotype (HE) S. alfredii, however, almost no tartaric acid was detected for non-hyperaccumulating ecotype (NHE). Tartaric acid was identified as the unique root exudate from HE S. alfredii which was mainly distributed within the range of rhizosphere 0–6 mm. Tartaric acid significantly increased the solubility of four Cd minerals. HE S. alfredii treated with tartrate + CdCO3 had higher Cd contents and larger biomass than CdCO3 treatment. Cadmium accumulation in HE S. alfredii was promoted by the exudation of tartaric acid, which was highly efficient in Cd solubilization due to the formation of soluble Cd-tartrate complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call