Abstract
Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.
Highlights
TRPA1 and TRPV1 have important roles in the sensation of pain, temperature, inflammation and cough in animals and man [1,2]
TRPA1V1 and 7 compounds that activated TRPA1V1 > TRPA1 or TRPV1 < TRPA1V1 (Table 1). These findings demonstrated that compounds can behave uniquely when they interact with TRPA1 and TRPV1 compared to the TRPA1V1
We found 33 °C to be the preferred temperature for maintaining TRPV1 and TRPA1V1 cells in culture, probably resulting from temperature induced activation of TRPV1 which causes cellular toxicity
Summary
TRPA1 and TRPV1 have important roles in the sensation of pain, temperature, inflammation and cough in animals and man [1,2]. TRPA1 is known to be expressed in the same sensory neurons as TRPV1 [5] and pharmacological interaction between the two receptors has been established [9,10,11,12]. Direct interaction resulting in hetero-tetramers between these two channels has been demonstrated using transient co-expression of the two receptors in CHO cells [13]. We have evaluated the response of cells stably co-expressing the TRPA1, TRPV1 and TRPA1V1 receptors to. We demonstrate that the response of TRPA1 and TRPV1 co-expressing cells to agonists shows expected and novel agonist specificity responses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.