Abstract

Based upon Landau–Lifshitz equation and Maxwell's equations, we theoretically investigated properties of normally incident microwave propagation in interlayer exchange-coupled trilayer ferromagnetic film. It is found that, near resonance frequency of optic mode, imaginary part of permeability of one ferromagnetic layer is smaller than zero unusually, i.e., the ferromagnetic layer may be taken as an active medium. Thus a number of unique electromagnetic properties are presented, such as, the ferromagnetic layer becomes a left-handed material near low side of the resonance frequency of optic mode, and both phase velocity and time-averaged Poynting flow of the usually defined forward wave are negative simultaneously near high side of the resonance frequency. This work provides a feasible active medium to demonstrate the unique microwave properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.