Abstract

AbstractIt is common knowledge that winter temperatures influence the life history of small mammals. Cold temperatures necessitate increased energy requirements for survival, and recent studies indicate that snow cover can have both negative and positive influences. With each new observation, we develop a more comprehensive understanding of the mechanisms that influence small mammal populations. Here we report on our recent study on Japanese field vole Microtus montebelli, which reaches its peak in population during the early spring and its low during the autumn. To understand the population dynamics of these voles, we conducted a capture‐mark‐recapture survey, then estimated the seasonal abundance, recruit, capture probabilities, and survival probabilities using the Bayesian hierarchical model. We also analyzed the impact of mammalian generalist predator visits on the survival probabilities. Our data indicates that the early spring peak in population is due to intensive winter breeding and the highest survival probabilities during the periods of deep snow cover. When snow cover reaches a certain depth, the circumstances can combine to raise survival probability and favor breeding. During the breeding season in May and June, on the contrary, the survival probability reached its lowest, resulting in a decrease in population despite breeding. The low survival probability between spring and autumn could be attributed to the impact of generalist predators, and low vegetation may have amplified the effect. In summary, the deep snow cover and generalist predators were considered to be the key factors shaping this unique population dynamics in this orchard area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call