Abstract

A particularly sensitive birefringence technique is used to analyze a curved DNA fragment with 118 bp and a standard DNA with 119 bp. At salt concentrations from 0.5 to 10 mM, both fragments show the usual negative stationary birefringence and monotonic transients - differences are relatively small. At 100 mM salt the curved DNA shows a positive stationary birefringence and non-monotonic transients with processes having amplitudes of opposite sign, whereas signals of the standard DNA remain as usual. Transients induced by reversal of the field vector indicate the existence of a permanent dipole for the curved DNA. 2-MHz-ac pulses induce a negative stationary birefringence in both DNAs. These results are consistent with calculations on models for curved DNA predicting a quasi-permanent dipole and a positive dichroism/birefringence. The quasi-permanent dipole results from the loss of symmetry in the charge distribution of the curved polyelectrolyte. The appearance of the unique signature of curvature at high salt is mainly due to a strong decrease of the polarizability by about 2 orders of magnitude. The special mode of orientation resulting from the quasi-permanent dipole is expected to contribute to the gel migration anomaly. The time constants of birefringence decay for the curved fragment are shorter than those of the 119 bp fragment by a factor of approximately 1.10 at 0.6 mM salt, whereas this factor is approximately 1.20 at 100 mM Na+. If both fragments were normal DNA with 3.4 A rise per base pair, the factor would be approximately 1.02. At high salt and high electric field strengths the factor increases up to 1.37. The implications for the bending dynamics and the potential to distinguish static from dynamic persistence by field reversal experiments are discussed. The dependence of the curvature on the salt concentration indicated by the time constants is consistent with a clear decrease of the electrophoretic anomaly at decreasing salt concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.