Abstract

Intermolecular interactions impact self-assembly phenomena having a variety of bio/chemical, physical, and mechanical consequences. Nevertheless, the underlying mechanisms leading to a controlled stereo- and chemo-specific aggregation at the molecular level often remain elusive because of the intrinsically dynamic nature of these processes. Herein, we describe two 3-styryl coumarin molecular rotors capable of probing subtle intermolecular interactions controlling the self-assembly of a small-molecule organogelator. Complementing the characterization of the gel via circular dichroism and atomic force microscopy, thorough spectroscopic investigations on these sensors were carried out to prove their high chemical and spatial affinity toward the 3D supramolecular network. The results were further supported by molecular dynamics simulations to reveal further critical insights into the gelator’s dynamic self-assembly mechanism. These sensors could potentially serve as templates to study a variety of soft-supramolecular architectures and the ways in which they assemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.