Abstract

The lead-free copper-based halide perovskite Cs3Cu2I5 is a promising material that can overcome the toxicity and instability of lead-based halide perovskites, thereby affording remarkable performance in the field of optoelectronics. Cs3Cu2I5 perovskite exhibits blue emission with a very high photoluminescence quantum yield (PLQY). First-principles calculations were used herein to theoretically expound the origins of the high PLQY of Cs3Cu2I5: (i) the low symmetry of Cs3Cu2I5 breaks the forbidden transition and enables the transition process; (ii) the large transition matrix and high transition rate increase the probability for radiative recombination of Cs3Cu2I5; (iii) the good defect tolerance broadens the path for thermal relaxation and radiative recombination. The high transition rate and good defect tolerance account for the high-efficiency PLQY of the lead-free copper-based perovskite, Cs3Cu2I5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call