Abstract

We report a melt spinning technique followed by a quick spark plasma sintering procedure to fabricate high-performance p-type Bi0.52Sb1.48Te3 bulk material with unique microstructures. The microstructures consist of nanocrystalline domains embedded in amorphous matrix and 5–15 nm nanocrystals with coherent grain boundary. The significantly reduced thermal conductivity leads to a state-of-the-art dimensionless figure of merit ZT∼1.56 at 300 K, more than 50% improvement of that of the commercial Bi2Te3 ingot materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call