Abstract
A structural feature of aureobasidins, cyclic depsipeptide antibiotics produced by Aureobasidium pullulans R106, is the N-methylation of four out of seven amide bonds. In order to investigate possible relationship between the molecular conformation and the amide N-methylation, aureobasidin A (AbA), which exhibits the potent antifungal activity, was subjected to X-ray crystal analysis. The crystal, recrystallized from ether (orthorhombic, space group P2(1)2(1)2(1), a = 21.643 (3) A, b = 49.865(10) A, c = 12.427 (1) A, z= 8), contained two independent conformers per asymmetric unit and they took on a similar arrowhead-like conformation. The conformation consisted of three secondary structures of antiparallel beta-sheet, and beta- and gamma-turns, and was stabilized by three intramolecular and transannular N-H O=C hydrogen bonds. The beta-hydroxy-N-methyl-l-valine residue, which is indispensable for its bioactivity, was located at the tip of the corner. Since a nearly identical conformation has been observed for aureobasidin E, a related cyclic depsipeptide, this arrowhead-like conformation may be energetically stable and important for biological activity. The contribution of the amide N-methylation to the conformation was investigated by model building and energy calculations. The energy-minimizations of AbA analogs, in which some (one to four) of four N-methylated amide bonds were replaced with usual amide bond, led to some conformers which are fairly different from the arrowhead form of AbA, although they are stabilized by three intramolecular N-H...O=C hydrogen bonds. This result explains the reason why four out of the seven amide bonds have to be methylated to manifest biological activity, i.e. the high N-methylation of aureobasidin is necessary to form only one well-defined conformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of peptide research : official journal of the American Peptide Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.