Abstract

The zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn(II). All the five complexes cleave the phiX174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. The enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.