Abstract

The inwardly rectifying potassium (Kir) 2.x channels mediate the cardiac inward rectifier potassium current (I(K1)). In addition to differences in current density, atrial and ventricular I(K1) have differences in outward current profiles and in extracellular potassium ([K+]o) dependence. The whole-cell patch-clamp technique was used to study these properties in heterologously expressed Kir2.x channels and atrial and ventricular I(K1) in guinea pig and sheep hearts. Kir2.x channels showed distinct rectification profiles: Kir2.1 and Kir2.2 rectified completely at potentials more depolarized than -30 mV (I approximately 0 pA). In contrast, rectification was incomplete for Kir2.3 channels. In guinea pig atria, which expressed mainly Kir2.1, I(K1) rectified completely. In sheep atria, which predominantly expressed Kir2.3 channels, I(K1) did not rectify completely. Single-channel analysis of sheep Kir2.3 channels showed a mean unitary conductance of 13.1+/-0.1 pS in 15 cells, which corresponded with I(K1) in sheep atria (9.9+/-0.1 pS in 32 cells). Outward Kir2.1 currents were increased in 10 mmol/L [K+]o, whereas Kir2.3 currents did not increase. Correspondingly, guinea pig (but not sheep) atrial I(K1) showed an increase in outward currents in 10 mmol/L [K+]o. Although the ventricles of both species expressed Kir2.1 and Kir2.3, outward I(K1) currents rectified completely and increased in high [K+]o-displaying Kir2.1-like properties. Likewise, outward current properties of heterologously expressed Kir2.1-Kir2.3 complexes in normal and 10 mmol/L [K+]o were similar to Kir2.1 but not Kir2.3. Thus, unique properties of individual Kir2.x isoforms, as well as heteromeric Kir2.x complexes, determine regional and species differences of I(K1) in the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.