Abstract

Abstract Tregs can employ numerous mechanisms for inhibiting immune responses. Antigen-specific Tregs exhibit enhanced capacity to suppress compared to polyclonal Tregs, but unique suppressor mechanisms used by antigen-specific Tregs have not been elucidated. We first compared the interaction of antigen-specific induced Tregs (iTregs) and antigen-specific T effector cells with dendritic cells (DC) using scanning electron microscopy and intravital two-photon microscopy. Antigen-specific iTregs uniquely and rapidly formed dense clusters around DC suggesting that they may prevent the access of antigen-specific CD4+ T cells to the DC surface. In an adoptive transfer model, this rapid interaction was accompanied by a decreased ability of co-transferred naïve T cells to interact with the DCs as indicated by their failure to decrease their motility. More importantly, antigen-specific iTregs were found to specifically transendocytose cognate peptide-MHCII complexes from the DC surface to a greater extent than T effector cells resulting in diminished levels of antigen on the DC surface. Transmission electron microscopy of DC-Treg co-cultures showed that Tregs engulfed parts of DC processes as membrane invaginations within two hours and then internalized the p-MHCII complexes into endosomal vesicles. Taken together, these results indicate a two-step process by which antigen-specific Tregs inhibit antigen presentation. They rapidly and efficiently adhere to the DC surface and then deplete the pMHC II complexes from the DC resulting in potent suppression of the capacity of the DC to activate antigen-specific T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.