Abstract

Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod-shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR). These findings characterize the robustness and ecological significance of filamentous surface motility in B. cereus group species and lay the foundation for understanding the biological role it may play during environment and host colonization.

Highlights

  • Bacterial surface migration is increasingly recognized as an important aspect of bacterial fitness, allowing cells to sense and occupy new niches, translocate rapidly across surfaces, resist antibiotics and other deleterious circumstances, and shift virulence states [1,2,3,4,5]

  • We examined the morphology of B. subtilis, B. licheniformis, and B. megaterium that did not exhibit filamentous motility

  • We characterized a novel inducible filamentous motility conserved among B. cereus s.l. species, which allowed cells to move through and colonize milieu such as bacterial debris, blood, and milk lawns on hard agar

Read more

Summary

Introduction

Bacterial surface migration is increasingly recognized as an important aspect of bacterial fitness, allowing cells to sense and occupy new niches, translocate rapidly across surfaces, resist antibiotics and other deleterious circumstances, and shift virulence states [1,2,3,4,5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call