Abstract

The principle hydrocarbon source in West Qaidam Basin, China, is the Xiaganchaigou formation, which charges a series of Cenozoic large reservoirs. We identified a series of organic-rich intervals within a sequence of Oligocene-age Xiaganchaigou evaporites in southwest Qaidam. By analyzing 2D and 3D seismic tomography and gamma ray well logs, we defined the distribution and extent of these source rocks. We also characterized their composition with trace element analysis and carbon and oxygen isotope measurements. Our data demonstrated distinctive characteristics of these source rocks with high salinity, abundant organic material, high hydrocarbon generation efficiency, and low maturity, which are associated with relatively rapid and productive hydrocarbon generation. Using high-pressure and high temperature experiments to simulate pyrolysis in samples of the source rocks, we investigated what enabled these young salt-rich source rocks to generate such an abundance of hydrocarbons. Our results highlighted the key role of saline and radioactive minerals in catalyzing accelerated pyrolysis of hydrocarbons during diagenesis and catagenesis. Salt catalysis clearly played an important role in hydrocarbon generation within lower maturity formations and also significantly improved and redefined the source rocks distribution and the extent of probable reserves in the southwest Qaidam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.