Abstract

ABSTRACTThe first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age.

Highlights

  • The chances of a chromosomally abnormal pregnancy increase dramatically in humans with advancing maternal age (Nagaoka et al, 2012)

  • In this study, we aimed to characterise the geometry of the meiotic kinetochore in human meiosis I (MI) oocytes

  • Because distinct kinetochore pairs accounted for the majority of pairs in all oocytes from all women who donated to the study, this indicated to us that separated sister kinetochores are an intrinsic feature of human MI oocytes

Read more

Summary

Introduction

The chances of a chromosomally abnormal pregnancy increase dramatically in humans with advancing maternal age (Nagaoka et al, 2012). Most meiosis-derived aneuploidies in early embryos originate from the first meiotic division of the oocyte, which is error-prone (Hassold and Hunt, 2001). During the first meiotic division, sister chromatids segregate together, which requires kinetochores on sister chromatids to form attachments to spindle kinetochore-fibres (k-fibres) from the same pole of the spindle. This is in contrast to mitosis and meiosis II (MII), in which sisters form attachments to opposite spindle poles.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call