Abstract

BackgroundThe ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood. Studies to map fine scale vector distributions are biased when trapping techniques use lures that will influence the natural movements of mosquitoes by attracting them to traps. However, passive collection methods allow the detailed natural distributions of vector populations by sex and physiological states to be revealed.MethodsThe barrier screen, a passive mosquito collection method along with human landing catches were used to record An. farauti distributions over time and space in two Solomon Island villages from May 2016 to July 2017.ResultsTemporal and spatial distributions of over 15,000 mosquitoes, including males as well as unfed, host seeking, blood-fed, non-blood fed and gravid females were mapped. These spatial and temporal patterns varied by species, sex and physiological state. Sugar-fed An. farauti were mostly collected between 10–20 m away from houses with peak activity from 18:00 to 19:00 h. Male An. farauti were mostly collected greater than 20 m from houses with peak activity from 19:00 to 20:00 h.ConclusionsAnopheles farauti subpopulations, as defined by physiological state and sex, are heterogeneously distributed in Solomon Island villages. Understanding the basis for these observed heterogeneities will lead to more accurate surveillance of mosquitoes and will enable spatial targeting of interventions for greater efficiency and effectiveness of vector control.

Highlights

  • The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood

  • Mosquito ecology remains inadequately understood for many species [1, 2], including Anopheles farauti, a dominant malaria vector in the southwest Pacific from western Indonesia through Papua New Guinea and the Solomon Islands to Vanuatu [3, 4]

  • There are significant variations in activity patterns among species and these patterns are changing as mosquitoes respond differently to selection pressures induced by vector control and changing environmental conditions [15, 16]

Read more

Summary

Introduction

The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood. Mosquito ecology remains inadequately understood for many species [1, 2], including Anopheles farauti, a dominant malaria vector in the southwest Pacific from western Indonesia through Papua New Guinea and the Solomon Islands to Vanuatu [3, 4]. After the malaria elimination campaigns using IRS with DDT, a shift to earlier and more outdoor blood-feeding occurred. This behavioural shift was reinforced by the widespread deployment of ITNs to the point where 76% of biting occurs outdoors before 21:00 h [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call